4.7 Article

Ab initio intermolecular potential energy surfaces of the water-rare gas atom complexes

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 129, 期 18, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3009270

关键词

ab initio calculations; argon; bonds (chemical); coupled cluster calculations; helium; krypton; neon; potential energy functions; potential energy surfaces; water

资金

  1. French Ministry of Foreign Affairs [16234UL]

向作者/读者索取更多资源

Highly accurate analytical intermolecular potential energy surfaces (PESs) of the complexes composed of the water molecule and the rare gas (Rg) atom are presented for Rg=He, Ne, Ar, and Kr. These PESs were scanned using the supermolecule coupled cluster singles and doubles including connected triples method [CCSD(T)]. Efficient basis sets including the bond functions (3s3p2d1f1g) enabled the calculation of more than 430 single-point interaction energies for each complex. These energies were utilized to construct the analytical many-body representations of the PESs. They were refined using the interaction energies evaluated at the complete basis set limit in the PES stationary points. In addition, the corrections from the core correlation were calculated for the complexes including He, Ne, and Ar. The many-body PES of XeH2O was built using the ab initio energy values reported by Wen and Jager [J. Phys. Chem. A 110, 7560 (2006)]. The clear regularities of the equilibrium structure and the potential barriers were found in the RgH(2)O series. A comparison of the ab initio and experimental PESs of ArH2O [R. C. Cohen and R. J. Saykally, J. Chem. Phys. 98, 6007 (1993)] reveals their close similarity, except for the potential barriers corresponding to the planar saddle points. Their energetic order is different in both PESs. This suggests that an alternative PES with the reversed barriers, consistent with the ab initio ones, could be derived from the experimental data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据