4.7 Article

The adsorption of CO on charged and neutral Au and Au2:: A comparison between wave-function based and density functional theory

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 128, 期 12, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.2834693

关键词

-

向作者/读者索取更多资源

Quantum theoretical calculations are presented for CO attached to charged and neutral Au and Au-2 with the aim to test the performance of currently applied density functional theory (DFT) by comparison with accurate wave-function based results. For this, we developed a compact sized correlation-consistent valence basis set which accompanies a small-core energy-consistent scalar relativistic pseudopotential for gold. The properties analyzed are geometries, dissociation energies, vibrational frequencies, ionization potentials, and electron affinities. The important role of the basis-set superposition error is addressed which can be substantial for the negatively charged systems. The dissociation energies decrease along the series Au+-CO, Au-CO, and Au--CO and as well as along the series Au-2(+)-CO, Au2-CO, and Au-2(-)-CO. As one expects, a negative charge on gold weakens the carbon oxygen bond considerably, with a consequent redshift in the CO stretching frequency when moving from the positively charged to the neutral and the negatively charged gold atom or dimer. We find that the different density functional approximations applied are not able to correctly describe the rather weak interaction between CO and gold, thus questioning the application of DFT to CO adsorption on larger gold clusters or surfaces. (c) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据