4.7 Article

Design of chemically propelled nanodimer motors

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 128, 期 16, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2908078

关键词

-

向作者/读者索取更多资源

The self-propelled motion of nanodimers fueled by a chemical reaction taking place under nonequilibrium steady state conditions is investigated. The nanodimer consists of a pair of catalytic and chemically inactive spheres, in general with different sizes, with a fixed internuclear separation. The solvent in which the dimer moves is treated at a particle-based mesoscopic level using multiparticle collision dynamics. The directed motion of the dimer can be controlled by adjusting the interaction potentials between the solvent molecules and the dimer spheres, the internuclear separation, and sphere sizes. Dimers can be designed so that the directed motion along the internuclear axis occurs in either direction and is much larger than the thermal velocity fluctuations, a condition needed for such nanodimers to perform tasks involving targeted dynamics. (C) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据