4.7 Article

Thermoelectrics in an array of molecular junctions

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 129, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2953462

关键词

-

向作者/读者索取更多资源

The room temperature thermoelectric properties of a three-dimensional array of molecular junctions are calculated. The array is composed of n-doped silicon nanoparticles where the surfaces are partially covered with polar molecules and the nanoparticles are bridged by trans-polyacetylene molecules. The role of the polar molecules is to reduce the band bending in the n-doped silicon nanoparticles and to shift the electronic resonances of the bridging molecules to the nanoparticle conduction band edges where the molecular resonances act as electron energy filters. The transmission coefficients of the bridging molecules that appear in the formulas for the Seebeck coefficient, the electrical conductance, and the electronic thermal conductance, are calculated using the nonequilibrium Green's function technique. A simple tight-binding Hamiltonian is used to describe the bridging molecules, and the self-energy term is calculated using the parabolic conduction band approximation. The dependencies of the thermoelectric properties of the molecular junctions on the silicon doping concentration and on the molecule-nanoparticle coupling are discussed. The maximal achievable thermoelectric figure of merit ZT of the array is estimated as a function of the phononic thermal conductance of the bridging molecules and the doping of the nanoparticles. The power factor of the array is also calculated. For sufficiently small phononic thermal conductances of the bridging molecules, very high ZT values are predicted. (C) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据