4.7 Article

Dispersion energy from density-fitted density susceptibilities of singles and doubles coupled cluster theory

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 128, 期 14, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2889006

关键词

-

向作者/读者索取更多资源

A new method of calculation of the second-order dispersion energy is proposed. It is based on the Longuet-Higgins formula [Faraday Discuss. Chem. Soc. 40, 7 (1965)], which describes the dispersion interaction in terms of frequency-dependent density susceptibilities of monomers. In this study, the density susceptibilities are obtained from the coupled cluster theory at the singles and doubles level. Density fitting is applied in order to reduce the computational effort for the evaluation of density susceptibilities. It is shown that density fitting improves the scaling of the computational resources with molecular size by one order of magnitude without affecting the accuracy of the resulting dispersion energy. Numerical results are presented for several van der Waals molecules to illustrate the performance of the new approach. (c) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据