4.7 Article

Interchain coupling effects on dynamics of photoexcitations in conjugated polymers

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 128, 期 18, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2912190

关键词

-

向作者/读者索取更多资源

Within an extended Su-Schrieffer-Heeger model including interchain interactions and the extended Hubbard model, the dynamical relaxation of photoexcitations in two coupled conjugated polymer chains is investigated by using a nonadiabatic evolution method. Initially, one of the two chains is photoexcited and the other chain is in the dimerized ground state. Due to the interchain interactions, the electron and/or the hole can be transferred from one chain to the other chain. For weak interchain coupling, the dynamical evolution of the lattice on the photoexcited chain is similar to that found in an isolate single chain case. With interchain interactions increasing, the amplitude of the distortions on the photoexcited chain decreases, and simultaneously, that on the other chain gradually increases. Until stronger interchain coupling, the deformations of the two chains have almost the same amplitude. Besides intrachain polaron-excitons and intrachain oppositely charged polaron pairs as found in single chain case, interchain polaron-excitons and interchain separated charged polaron pairs are obtained. The results show that the yield of interchain products increases and that of intrachain products decreases with interchain coupling increasing. Totally, the yield of charged polarons (including intrachain oppositely charged polaron pairs and interchain oppositely charged polaron pairs) is about 25%, in good agreement with results from experiments. (C) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据