4.7 Article

Vibrational overtone initiated unimolecular dissociation of HOCH2OOH and HOCD2OOH:: Evidence for mode selective behavior

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 128, 期 18, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2912063

关键词

-

向作者/读者索取更多资源

The vibrational overtone induced unimolecular dissociation of HMHP (HOCH(2)OOH) and HMHP-d(2) (HOCD(2)OOH) into OH and HOCH(2)O (HOCD(2)O) fragments is investigated in the region of the 4 nu(OH) and 5 nu(OH) bands. The unimolecular dissociation rates in the threshold region, corresponding to the 4 nu(OH) band, exhibit measurable differences associated with excitation of the OH stretch of the alcohol versus the peroxide functional group, with the higher energy alcohol OH stretching state exhibiting a slower dissociation rate compared to the lower energy peroxide OH stretch in both HMHP and HMHP-d(2). Predictions using the Rice-Ramsperger-Kassel-Marcus theory give rates that are in reasonably good agreement with the measured dissociation rate for the alcohol OH stretch but considerably differ from the measured rates for the peroxide OH stretch in both isotopomers. The present results are interpreted as suggesting that the extent of intramolecular vibrational energy redistribution (IVR) is different for the two OH stretching states associated with the two functional groups in HMHP, with IVR being substantially less complete for the peroxide OH stretch. Analysis of the OH fragment product state distributions in conjunction with phase-space theory simulation gives a D(0) value of 38 +/- 0.7 kcal/mole for breaking the peroxide bond in HMHP. (C) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据