4.7 Article

Forced dissociation of a biomolecular complex under periodic and correlated random forcing

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 128, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2841404

关键词

-

向作者/读者索取更多资源

The dissociation of a biomolecular complex under the action of periodic and correlated random forcing is studied theoretically. The former is characterized by the period tau(p) and the latter by the correlation time tau(r). The rupture rates are calculated by overdamped Langevin dynamics and three distinct regimes are identified for both cases by comparison to local relaxation time tau(R) and bond lifetime 7). For periodic forcing, the adiabatic approximation cannot be applied in the regime tau(p) <, the rupture rate is enhanced by periodic forcing but is tau(p) independent. Analytical expressions are obtained for small and large force amplitudes. As < T > << tau(p), the rupture rate depends on the phase lag and the process behaves like it is under constant force or loading rate. The result of correlated random forcing is similar to that of periodic forcing. Since the fluctuating forces greater than the average force < F > contribute more than the fluctuating forces less than < F >, the force fluctuations enhance the rupture rate. As < T > < tau(r), the pulling felt by the bond before rupture cannot follow the random forcing protocol and, thus, force fluctuations decline with increasing tau(r). (c) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据