4.7 Article

The polarization anisotropy of vibrational quantum beats in resonant pump-probe experiments: Diagrammatic calculations for square symmetric molecules

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 129, 期 17, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2982160

关键词

excited states; Raman spectra; two-photon processes; vibrational states; vibronic states

资金

  1. Division Of Chemistry
  2. Direct For Mathematical & Physical Scien [0809987] Funding Source: National Science Foundation

向作者/读者索取更多资源

By analogy to the Raman depolarization ratio, vibrational quantum beats in pump-probe experiments depend on the relative pump and probe laser beam polarizations in a way that reflects vibrational symmetry. The polarization signatures differ from those in spontaneous Raman scattering because the order of field-matter interactions is different. Since pump-probe experiments are sensitive to vibrations on excited electronic states, the polarization anisotropy of vibrational quantum beats can also reflect electronic relaxation processes. Diagrammatic treatments, which expand use of the symmetry of the two-photon tensor to treat signal pathways with vibrational and vibronic coherences, are applied to find the polarization anisotropy of vibrational and vibronic quantum beats in pump-probe experiments for different stages of electronic relaxation in square symmetric molecules. Asymmetric vibrational quantum beats can be distinguished from asymmetric vibronic quantum beats by a pi phase jump near the center of the electronic spectrum and their disappearance in the impulsive limit. Beyond identification of vibrational symmetry, the vibrational quantum beat anisotropy can be used to determine if components of a doubly degenerate electronic state are unrelaxed, dephased, population exchanged, or completely equilibrated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据