4.7 Article

Inverse molecular design in a tight-binding framework

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 129, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2955756

关键词

-

向作者/读者索取更多资源

The number of chemical species of modest molecular weight that can be accessed with known synthetic methods is astronomical. An open challenge is to explore this space in a manner that will enable the discovery of molecular species and materials with optimized properties. Recently, an inverse molecular design strategy, the linear combination of atomic potentials (LCAP) approach [J. Am. Chem. Soc. 128, 3228 (2006)] was developed to optimize electronic polarizabilities and first hyperpolarizabilities. Here, using a simple tight-binding (TB) approach, we show that continuous optimization can be carried out on the LCAP surface successfully to explore vast chemical libraries of 10(2) to 10(16) extended aromatic compounds. We show that the TB-LCAP optimization is not only effective in locating globally optimal structures based on their electronic polarizabilities and first hyperpolarizabilities, but also is straightforwardly extended to optimize transition dipole moments and HOMO-LUMO energy gaps. This approach finds optimal structures among 10(4) candidates with about 40 individual molecular property calculations. As such, for structurally similar molecular candidates, the TB-LCAP approach may provide an effective means to identify structures with optimal properties. (C) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据