4.7 Review

Understanding the rate of spin-forbidden thermolysis of HN3 and CH3N3

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 129, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2953697

关键词

-

向作者/读者索取更多资源

The pyrolysis of the simplest azides HN(3) and CH(3)N(3) has been studied computationally. Nitrogen extrusion leads to the production of NH or CH(3)N. The azides have singlet ground states but the nitrenes CH(3)N and NH have triplet ground states. The competition between spin-allowed decomposition to the excited state singlet nitrenes and the spin-forbidden N(2) loss is explored using accurate electronic structure methods (CASSCF/cc-pVTZ and MR-AQCC/cc-pVTZ) as well as statistical rate theories. Nonadiabatic rate theories are used for the dissociation leading to the triplet nitrenes. For HN(3), (3)NH formation is predicted to dominate at low energy, and the calculated rate constant agrees very well with energy-resolved experimental measurements. Under thermal conditions, however, the singlet and triplet pathways are predicted to occur competitively, with the spin-allowed product increasingly favored at higher temperatures. For CH(3)N(3) thermolysis, spin-allowed dissociation to form (1)CH(3)N should largely dominate at all temperatures, with spin-forbidden formation of (3)CH(3)N almost negligible. Singlet methyl nitrene is very unstable and should rearrange to CH(2)NH immediately upon formation, and the latter species may lose H(2) competitively with vibrational cooling, depending on temperature and pressure. (C) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据