4.7 Article

Cold and ultracold chemical reactions of F+HCl and F+DCl

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 128, 期 22, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2928804

关键词

-

向作者/读者索取更多资源

We report quantum dynamics calculations of F(P-2)+HCl(v,j)-> HF(v',j')+Cl(P-2) and F+DCl(v,j)-> DF(v',j')+Cl reactions at cold and ultracold temperatures. The effect of rotational and vibrational excitations of the HCl molecule on the reactivity is investigated. It is found that, in the ultracold regime, vibrational excitation of the HCl molecule from v=0 to v=2 enhances the reactivity by four orders of magnitude. The rotational excitation from j=0 to j=1 decreases the reactivity while the rotational excitation from j=0 to j=2 increases the reactivity. The overall effect of rotational excitation was found to be much smaller than vibrational excitation. The reactivity of the F+DCl system is significantly lower than that of the F+HCl case indicating the importance of quantum tunneling at low energies. For both reactions, Feshbach resonances corresponding to F center dot center dot center dot HCl or F center dot center dot center dot DCl triatomic states occur at low energies. We also explored the validity of the coupled-states approximation for cold collisions taking the F+HCl(v=0,j=0) reaction as an illustrative example. It is found that the coupled-states approximation is generally valid for the background scattering even at low energies but it is inadequate to accurately describe the rich resonances in the energy dependence of the cross section resulting from the decay of van der Waals complexes. It is further shown that the coupled-states approximation cannot be used for scattering in the Wigner threshold regime when the molecule is initially in a rotationally excited level. (C) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据