4.7 Article

Hybrid ab initio Kohn-Sham density functional theory/frozen-density orbital-free density functional theory simulation method suitable for biological systems

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 128, 期 1, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.2814165

关键词

-

向作者/读者索取更多资源

A hybrid computational method intended for simulations of biomolecules in solution is described. The ab initio Kohn-Sham (KS) density functional theory (DFT) method is used to describe the chemically active part of the system and its first solvation shells, while a frozen-density orbital-free (FDOF) DFT method is used to treat the rest of the solvent. The molecules in the FDOF method have fixed internal structures and frozen electron densities. The hybrid method provides a seamless description of the boundary between the subsystems and allows for the flow of molecules across the boundary. Tests on a liquid water system show that the total energy is conserved well during molecular dynamics and that the effect of the solvent environment on the KS subsystem is well described. An initial application to copper ion binding to the prion protein is also presented. (c) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据