4.7 Article

Restoring the size consistency of multireference configuration interactions through class dressings: Applications to ground and excited states

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 129, 期 6, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2938371

关键词

-

资金

  1. The Laboratoire de Chimie et Physique Quantiques is Unite Mixte de Recherche [UMR 5626]

向作者/读者索取更多资源

The present paper presents a revised version of a size-consistency correction to the multireference configuration interaction techniques previously proposed by Szalay [J. Phys. Chem. 100, 6288 (1996)]. The method assumes a complete active space reference space and separates the nonreference determinants in several classes according to their number of inactive holes and particles. The correction is formulated as a dressing of the diagonal energies of these determinants, which depends on their class, as originally proposed by Ruttink [J. Chem. Phys. 94, 7212 (1991)]. The exclusion principle violating corrections are evaluated through a simple counting of the various excitation processes which remain possible on each class. The efficiency of the method has been tested on a series of multireference problems for which full configuration interaction results are available (OH(2) bond breaking, Be insertion in H(2), excited states of CH(2)). The dressing of a given state not only provides excellent results for this state but also provides accurate excited roots. The efficiency of state-specific dressings is dramatic. The adaptation of this proposal to difference-dedicated configuration interactions can be extremely fruitful, as illustrated in the calculation of the 1 (1)A(g)-1(1)B(u)(pi->pi*) transition energy of the trans-butadiene molecule. (C) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据