4.7 Article

Effects of pressure and temperature on the carrier transports in organic crystal: A first-principles study

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 128, 期 19, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2918276

关键词

-

向作者/读者索取更多资源

By employing density-functional theory coupled with Holstein-Peierls model, we investigate the pressure and temperature dependence of the hole and electron mobilities in naphthalene single crystal from atmospheric pressure up to 2.1 GPa (at room temperature) and from 5 to 296 K (at ambient pressure). It is found that the pressure reduces the electron-phonon coupling strength and enhances the mobilities. Importantly, we point out that only when temperature-dependent structure modifications are taken into account can one better describe the temperature-dependent transport behavior. Especially, the band to hopping crossover transition temperature for the electron transport in the c'-axis is calculated to be around 153 K, which is close to the experimental result of between 100 and 150 K. If this temperature-dependent structure modifications were neglected, the transition temperature would be only about 23 K, as previously obtained [L. J. Wang , J. Chem. Phys. 127, 044506 (2007)]. (c) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据