4.7 Article

Molecular Binding Sites Are Located Near the Interface of Intrinsic Dynamics Domains (IDDs)

期刊

JOURNAL OF CHEMICAL INFORMATION AND MODELING
卷 54, 期 8, 页码 2275-2285

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ci500261z

关键词

-

资金

  1. National Science Council [NSC 102B0251 V9]

向作者/读者索取更多资源

We provide evidence supporting that protein-protein and protein-ligand docking poses are functions of protein shape and intrinsic dynamics. Over sets of 68 protein-protein complexes and 240 nonhomologous enzymes, we recognize common predispositions for binding sites to have minimal vibrations and angular momenta, while two interacting proteins orient so as to maximize the angle between their rotation/bending axes (>65 degrees). The findings are then used to define quantitative criteria to filter out docking decoys less likely to be the near-native poses; hence, the chances to find near-native hits can be doubled. With the novel approach to partition a protein into domains of robust but disparate intrinsic dynamics, 90% of catalytic residues in enzymes can be found within the first 50% of the residues closest to the interface of these dynamics domains. The results suggest an anisotropic rather than isotropic distribution of catalytic residues near the mass centers of enzymes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据