4.7 Article

Rapid Context-Dependent Ligand Desolvation in Molecular Docking

期刊

JOURNAL OF CHEMICAL INFORMATION AND MODELING
卷 50, 期 9, 页码 1561-1573

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ci100214a

关键词

-

资金

  1. NIH [GM59957]

向作者/读者索取更多资源

In structure-based screens for new ligands, a molecular docking algorithm must rapidly score many molecules in multiple configurations, accounting for both the ligand's interactions with receptor and its competing interactions with solvent. Here we explore a context-dependent ligand desolvation scoring term for molecular docking. We relate the Generalized-Born effective Born radii for every ligand atom to a fractional desolvation and then use this fraction to scale an atom-by-atom decomposition of the full transfer free energy. The fractional desolvation is precomputed on a scoring grid by numerically integrating over the volume of receptor proximal to a ligand atom, weighted by distance. To test this method's performance, we dock ligands versus property-matched decoys over 40 DUD targets. Context-dependent desolvation better enriches ligands compared to both the raw full transfer free energy penalty and compared to ignoring desolvation altogether, though the improvement is modest. More compellingly, the new method improves docking performance across receptor types. Thus, whereas entirely ignoring desolvation works best for charged sites and overpenalizing with full desolvation works well for neutral sites, the physically more correct context-dependent ligand desolvation is competitive across both types of targets. The method also reliably discriminates ligands from highly charged molecules, where ignoring desolvation performs poorly. Since this context-dependent ligand desolvation may be precalculated, it improves clocking reliability with minimal cost to calculation time and may be readily incorporated into any physics-based docking program.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据