4.3 Article

Modifying the Alkylglucosinolate Profile in Arabidopsis thaliana Alters the Tritrophic Interaction with the Herbivore Brevicoryne brassicae and Parasitoid Diaeretiella rapae

期刊

JOURNAL OF CHEMICAL ECOLOGY
卷 35, 期 8, 页码 958-969

出版社

SPRINGER
DOI: 10.1007/s10886-009-9677-6

关键词

Glucosinolate; Isothiocyanate; Arabidopsis thaliana; Diaeretiella rapae; Brevicoryne brassicae; 2-oxoglutarate-dependent dioxygenase

资金

  1. BBSRC (Biotechnology and Biological Sciences Research Council) [32/P17268]
  2. Biotechnology and Biological Sciences Research Council [BB/C514115/1] Funding Source: researchfish

向作者/读者索取更多资源

Arabidopsis thaliana was used as an experimental model plant to investigate a tritrophic interaction between the plant, a specialist aphid herbivore, Brevicoryne brassicae, and its natural enemy, the parasitoid Diaeretiella rapae. The A. thaliana ecotype Col-5 was transformed with a functional 2-oxoglutarate dependent dioxygenase (BniGSL-ALK) that converts 3-methylsulfinylpropylglucosinolate and 4-methylsulfinylbutylglucosinolate to 2-propenylglucosinolate and 3-butenylglucosinolate, respectively. This transformation results in a change in the glucosinolate hydrolysis profile where 3-butenylisothiocyanate, 2-propenylisothiocyanate and 5-vinyloxazolidine-2-thione are produced in contrast to the wild-type plant where 4-methylsulfinylbutylisothiocyanate is the main product. Performance of B. brassicae was affected negatively by transforming Col-5 with BniGSL-ALK in terms of mean relative growth rates. In a series of behavioral bioassays, na < ve D. rapae females were able to discriminate between B. brassicae infested and uninfested Col-5 plants transformed with BniGSL-ALK, with parasitoids showing a preference for B. brassicae infested plants. By contrast, na < ve D. rapae females were unable to discriminate between aphid infested and uninfested Col-5 plants. Subsequent air entrainments of B. brassicae infested Col-5 plants transformed with BniGSL-ALK further confirmed the presence of 3-butenylisothiocyanate in the headspace. By contrast, no glucosinolate hydrolysis products were recorded from similarly infested Col-5 plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据