4.2 Article Proceedings Paper

Molecular Dynamics Simulations of Hydrogen Bonding in Clathrate Hydrates with Ammonia and Methanol Guest Molecules

期刊

JOURNAL OF CHEMICAL AND ENGINEERING DATA
卷 60, 期 2, 页码 389-397

出版社

AMER CHEMICAL SOC
DOI: 10.1021/je5006517

关键词

-

资金

  1. National Research Council of Canada
  2. National Research Foundation of Korea [21A20131800001] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

We performed molecular dynamics simulations of the ammonia and methanol-based clathrate hydrates with the emphasis on characterizing hydrogen-bonding interactions of these guest molecules with the water lattice. Systems studied include structure II (sII) binary clathrate hydrates of tetrahydrofuran (THF) (large cage, L) + NH3 (small cage, S) and THF (L) + CH3OH (S), the structure I (sI) pure NH3 (L), pure CH3OH (L), the binary NH3 (L) + CH4 (S), and binary CH3OH (L) + CH4 (S) clathrate hydrates. We simulated these clathrate hydrates with the transferable intermolecular potential with four point changes (TIP4P) water potential and the TIP4P/ice water potential to determine the effect of the water potential on the predicted hydrogen bonding of the guest molecules. Simulations show that, despite strongly hydrogen bonding with the framework water molecules, clathrate hydrate phases with NH3 and CH3OH can be stable within temperatures ranges up to 240 K. Indeed, a limited number of thermodynamic integration free energy calculations show that both NH3 and CH3OH molecules give more stable guesthost configurations in the large sI clathrate hydrate cages than methane guests. Predictions of hydrogen bonding from simulations with the two different water potentials used can differ substantially. To study the effect of proton transfer from water to the basic NH3 guests, simulations were performed on a binary NH3 + CH4 sI clathrate hydrate where less than 10 % of the ammonia guests in the large cages were converted to NH4+ and a water molecule of the hydrate lattice in the same large cage was converted to OH-. The small percentage of proton transfer to ammonia guests in the large cages did not affect the stability of the resultant hydrate. The structural perturbations in the lattice that result from this proton transfer are characterized.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据