4.6 Article

Fibrinogen-induced increased pial venular permeability in mice

期刊

出版社

SAGE PUBLICATIONS INC
DOI: 10.1038/jcbfm.2011.144

关键词

cerebrovascular permeability; endothelial cell cadherin; intercellular adhesion molecule-1; macromolecular leakage; matrix metalloproteinases

资金

  1. NIH [HL-80394, HL-80394S2, HL-71010, NS-051568]

向作者/读者索取更多资源

Elevated blood level of Fibrinogen (Fg) is commonly associated with vascular dysfunction. We tested the hypothesis that at pathologically high levels, Fg increases cerebrovascular permeability by activating matrix metalloproteinases (MMPs). Fibrinogen (4 mg/mL blood concentration) or equal volume of phosphate-buffered saline (PBS) was infused into male wild-type (WT; C57BL/6J) or MMP-9 gene knockout (MMP9-/-) mice. Pial venular leakage of fluorescein isothiocyanate-bovine serum albumin to Fg or PBS alone and to topically applied histamine (10(-5) mol/L) were assessed. Intravital fluorescence microscopy and image analysis were used to assess cerebrovascular protein leakage. Pial venular macromolecular leakage increased more after Fg infusion than after infusion of PBS in both (WT and MMP9-/-) mice but was more pronounced in WT compared with MMP9-/- mice. Expression of vascular endothelial cadherin (VE-cadherin) was less and plasmalemmal vesicle-associated protein-1 (PV-1) was greater in Fg-infused than in PBS-infused both mice groups. However, in MMP9-/- mice, VE-cadherin expression was greater and PV-1 expression was less than in WT mice. These data indicate that at higher levels, Fg compromises microvascular integrity through activation of MMP-9 and downregulation of VE-cadherin and upregulation of PV-1. Our results suggest that elevated blood level of Fg could have a significant role in cerebrovascular dysfunction and remodeling. Journal of Cerebral Blood Flow & Metabolism (2012) 32, 150-163; doi:10.1038/jcbfm.2011.144; published online 12 October 2011

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据