4.7 Article

Effect of CTGF/CCN2 on Osteo/Cementoblastic and Fibroblastic Differentiation of a Human Periodontal Ligament Stem/Progenitor Cell Line

期刊

JOURNAL OF CELLULAR PHYSIOLOGY
卷 230, 期 1, 页码 150-159

出版社

WILEY-BLACKWELL
DOI: 10.1002/jcp.24693

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science, and Technology, Japan [24390426, 24659848, 24792028, 25293388, 25670811, 26670825]
  2. Grants-in-Aid for Scientific Research [25670811, 24390426, 25293388, 24792028, 24659848, 26670825] Funding Source: KAKEN

向作者/读者索取更多资源

Appropriate mechanical loading during occlusion and mastication play an important role in maintaining the homeostasis of periodontal ligament (PDL) tissue. Connective tissue growth factor (CTGF/CCN2), a matricellular protein, is known to upregulate extracellular matrix production, including collagen in PDL tissue. However, the underlying mechanisms of CTGF/CCN2 in regulation of PDL tissue integrity remain unclear. In this study, we investigated the effect of CTGF/CCN2 on osteo/cementoblastic and fibroblastic differentiation of human PDL stem cells using the cell line 1-11. CTGF/CCN2 expression in rat PDL tissue and human PDL cells (HPDLCs) was confirmed immunohisto/cytochemically. Mechanical loading was found to increase gene expression and secretion of CTGF/CCN2 in HPDLCs. CTGF/CCN2 upregulated the proliferation and migration of 1-11 cells. Furthermore, increased bone/cementum-related gene expression in this cell line led to mineralization. In addition, combined treatment of 1-11 cells with CTGF/CCN2 and transforming growth factor-1 (TGF-1) significantly promoted type I collagen and fibronectin expression compared with that of TGF-1 treatment alone. Thus, these data suggest the underlying biphasic effects of CTGF/CCN2 in 1-11 cells, inducible osteo/cementoblastic, and fibroblastic differentiation dependent on the environmental condition. CTGF/CCN2 may contribute to preservation of the structural integrity of PDL tissue, implying its potential use as a therapeutic agent for PDL regeneration. J. Cell. Physiol. 229: 150-159, 2014. (c) 2014 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据