4.7 Article

Transient acidification and subsequent proinflammatory cytokine stimulation of astrocytes induce distinct activation phenotypes

期刊

JOURNAL OF CELLULAR PHYSIOLOGY
卷 228, 期 6, 页码 1284-1294

出版社

WILEY-BLACKWELL
DOI: 10.1002/jcp.24283

关键词

-

资金

  1. PHS [OD11104, RR00164, MH077544, P20RR16816]
  2. AGM FMI [P20RR15637]
  3. Tulane Committee on Research Summer Fellowship
  4. Louisiana Board of Regents Fellowship LEQSF NAR [2007-2012-GF15]

向作者/读者索取更多资源

The foot processes of astrocytes cover over 60% of the surface of brain microvascular endothelial cells, regulating tight junction integrity. Retraction of astrocyte foot processes has been postulated to be a key mechanism in pathology. Therefore, movement of an astrocyte in response to a proinflammatory cytokine or even limited retraction of processes would result in leaky junctions between endothelial cells. Astrocytes lie at the gateway to the CNS and are instrumental in controlling leukocyte entry. Cultured astrocytes typically have a polygonal morphology until stimulated. We hypothesized that cultured astrocytes which were induced to stellate would have an activated phenotype compared with polygonal cells. We investigated the activation of astrocytes derived from adult macaques to the cytokine TNF- under resting and stellated conditions by four parameters: morphology, intermediate filament expression, adhesion, and cytokine secretion. Astrocytes were stellated following transient acidification; resulting in increased expression of GFAP and vimentin. Stellation was accompanied by decreased adhesion that could be recovered with proinflammatory cytokine treatment. Surprisingly, there was decreased secretion of proinflammatory cytokines by stellated astrocytes compared with polygonal cells. These results suggest that astrocytes are capable of multiple phenotypes depending on the stimulus and the order stimuli are applied. J. Cell. Physiol. 228: 12841294, 2013. (c) 2012 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据