4.7 Article

Post-Transcriptional Regulation of α-Smooth Muscle Actin Determines the Contractile Phenotype of Dupuytren's Nodular Cells

期刊

JOURNAL OF CELLULAR PHYSIOLOGY
卷 224, 期 3, 页码 681-690

出版社

WILEY-LISS
DOI: 10.1002/jcp.22167

关键词

-

资金

  1. Healing Foundation [DKMB_P11084]
  2. British Society for Surgery of the Hand
  3. Hammersmith Hospitals Trustees' Research Committee [P13262_DKMB]
  4. Kennedy Institute of Rheumatology Trustees, Imperial College London
  5. NIHR Biomedical Research Centre
  6. MRC [G0700108] Funding Source: UKRI
  7. Medical Research Council [G0700108] Funding Source: researchfish

向作者/读者索取更多资源

The objective was to study Dupuytren's myofibroblast cells in constrained collagen matrices in order to more closely emulate their in vivo environment and, to correlate their contractility with alpha-smooth muscle actin (alpha-SMA) expression and determine if dermal fibroblasts regulate Dupuytren's myofibroblast phenotype. Isotonic and isometric force contraction by cells isolated from Dupuytren's nodules, palmar and non-palmar skin fibroblasts was measured in collagen matrices. The effect of co-culturing nodule cells with dermal fibroblasts on isometric contraction was examined. Isometric contraction was correlated with levels of alpha-SMA mRNA by per and protein by Western blotting, and alpha-SMA distribution assessed by immunofluorescence. Dupuytren's nodule cells exhibited similar levels of isotonic contraction to both palmar and non-palmar dermal fibroblasts. However, nodule cells generated high levels of isometric force (mean: 3.5 dynes/h), which continued to increase over 24 h to a maximum of 173 dynes. In contrast, dermal fibroblasts initially exhibited low levels of contraction (mean: 0.5 dynes/h) and reached tensional homeostasis on average after 15 h (range: 4-20 h), with a maximum force of 52 dynes. Although all three cell types had similar alpha-SMA mRNA levels, increased levels of alpha-SMA protein were observed in nodule cells compared to dermal fibroblasts. alpha-SMA localised to stress fibres in 35% (range: 26-50%) of nodule cells compared to only 3% (range:0-6%) of dermal fibroblasts. Co-cultures of Dupuytren's cells and dermal fibroblasts showed no contractile differences. The contractile phenotype of Dupuytren's myofibroblasts is determined by increased alpha-SMA protein distributed in stress fibres, not by cellular mRNA levels. Dupuytren's cell contractility is not influenced by dermal fibroblasts. J. Cell. Physiol. 224: 681-690, 2010. (C) 2010 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据