4.7 Article

Interactions between integrin ligand density and cytoskeletal integrity regulate BMSC chondrogenesis

期刊

JOURNAL OF CELLULAR PHYSIOLOGY
卷 217, 期 1, 页码 145-154

出版社

WILEY-LISS
DOI: 10.1002/jcp.21484

关键词

-

资金

  1. Georgia Tech/Emory Center (GTEC) for the Engineering of Living Tissues
  2. National Science Foundation [EEC-9731643]

向作者/读者索取更多资源

Interactions with the extracellular matrix play important roles in regulating the phenotype and activity of differentiated articular chondrocytes; however, the influences of integrin-mediated adhesion on the chondrogenesis of mesenchymal progenitors remain unclear. In the present study, agarose hydrogels were modified with synthetic peptides containing the arginine-glycine-aspartic acid (RGD) motif to investigate the effects of integrin-mediated adhesion and cytoskeletal organization on the chondrogenesis of bone marrow stromal cells (BMSCs) within a three-dimensional culture environment. Interactions with the RGD-modified hydrogels promoted BMSC spreading in a density-dependent manner and involved alpha v beta 3 integrin receptors. When cultured with the chondrogenic supplements, TGF-beta 1 and dexamethasone, adhesion to the RGD sequence inhibited the stimulation of sulfated-glycosaminoglycan (sGAG) production in a RGD density-dependent manner, and this inhibition could be blocked by disrupting the F-actin cytoskeleton with cytochalasin D. In addition, interactions with the RGD-modified gels promoted cell migration and aggrecanase-mediated release of sGAG to the media. While adhesion to the RGD sequence inhibited BMSC chondrogenesis in the presence of TGF-beta 1 and dexamethasone, osteocalcin and collagen 1 gene expression and alkaline phosphatase activity were enhanced by RGD interactions in the presence of serum-supplemented medium. Overall, the results of this study demonstrate that integrin-mediated adhesion within a three-dimensional environment inhibits BMSC chondrogenesis through actin cytoskeleton interactions. Furthermore, the effects of RGD-adhesion on mesenchymal differentiation are lineage-specific and depend on the biochemical composition of the cellular microenvironment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据