4.7 Article

Transient receptor potential vanilloid 4 deficiency suppresses unloading-induced bone loss

期刊

JOURNAL OF CELLULAR PHYSIOLOGY
卷 216, 期 1, 页码 47-53

出版社

WILEY-LISS
DOI: 10.1002/jcp.21374

关键词

-

向作者/读者索取更多资源

Mechanosensing is one of the crucial components of the biological events. In bone, as observed in unloading-induced osteoporosis in bed ridden patients, mechanical stress determines the levels of bone mass. Many molecules have been suggested to be involved in sensing mechanical stress in bone, while the full pathways for this event has not yet been identified. We examined the role of TRPV4 in unloading-induced bone loss. Hind limb unloading induced osteopenia in wild-type mice. In contrast, TRPV4 deficiency suppressed such unloading-induced bone loss. As underlying mechanism for such effects, TRPV4 deficiency suppressed unloading-induced reduction in the levels of mineral apposition rate and bone formation rate. In these mice, unloading-induced increase in the number of osteoclasts in the primary trabecular bone was suppressed by TRPV4 deficiency. Unloading-induced reduction in the longitudinal length of primary trabecular bone was also suppressed by TRPV4 deficiency. TRPV4 protein is expressed in both osteoblasts and osteoclasts. These results indicated that TRPV4 plays a critical role in unloading-induced bone loss.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据