4.6 Article

Osteoblastogenesis and osteoprotection enhanced by flavonolignan silibinin in osteoblasts and osteoclasts

期刊

JOURNAL OF CELLULAR BIOCHEMISTRY
卷 113, 期 1, 页码 247-259

出版社

WILEY
DOI: 10.1002/jcb.23351

关键词

Bone resorption; Matrix mineralization; Osteoblast; Osteoclast; Silibinin

资金

  1. Ministry of Knowledge Economy
  2. Korean Government (MEST)
  3. Medical & Bio-Materials Research Center
  4. Ministry for the Ministry of Knowledge Economy
  5. Korea Research Foundation

向作者/读者索取更多资源

Bone-remodeling imbalance induced by decreased osteoblastogenesis and increased bone resorption is known to cause skeletal diseases such as osteoporosis. Silibinin is the major active constituent of silymarin, the mixture of flavonolignans extracted from blessed milk thistle (Silybum marianum). Numerous studies suggest that silibinin is a powerful antioxidant and has anti-hepatotoxic properties and anti-cancer effects against carcinoma cells. This study investigated that silibinin had bone-forming and osteoprotective effects in in vitro cell systems of murine osteoblastic MC3T3-E1 cells and RAW 264.7 murine macrophages. MC3T3-E1 cells were incubated in osteogenic media in the presence of 120 mu M silibinin up to 15 days. Silibinin accelerated cell proliferation and promoted matrix mineralization by enhancing bone nodule formation by calcium deposits. In addition, silibinin furthered the induction of osteoblastogenic biomarkers of alkaline phosphatase, collagen type 1, connective tissue growth factor, and bone morphogenetic protein-2. Differentiated MC3T3-E1 cells enhanced secretion of receptor activator of nuclear factor-?B ligand (RANKL) essential for osteoclastogenesis, which was reversed by silibinin. On the other hand, RAW 264.7 cells were pre-incubated with 120 mu M silibinin for 5 days in the presence of RANKL. Non-toxic silibinin markedly attenuated RANK transcription and intracellular adhesion molecule-1 expression elevated by RANKL, thereby suppressing the differentiation of macrophages to multi-nucleated osteoclasts. It was also found that silibinin retarded tartrate-resistant acid phosphatase and cathepsin K induction and matrix metalloproteinase-9 activity elevated by RANKL through disturbing TRAF6-c-Src signaling pathways. These results demonstrate that silibinin was a potential therapeutic agent promoting bone-forming osteoblastogenesis and encumbering osteoclastic bone resorption. J. Cell. Biochem. 113: 247259, 2012. (C) 2011 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据