4.6 Article

Modulation of Nucleocytoplasmic Trafficking by Retention in Cytoplasm or Nucleus

期刊

JOURNAL OF CELLULAR BIOCHEMISTRY
卷 107, 期 6, 页码 1160-1167

出版社

WILEY
DOI: 10.1002/jcb.22218

关键词

NUCLEAR IMPORT; NUCLEAR EXPORT; FRAP; RETINOBLASTOMA PROTEIN; SV40 LARGE TUMOR ANTIGEN

资金

  1. National Health and Medical Research Council [384107]

向作者/读者索取更多资源

Nuclear protein transport processes have largely been studied using in vitro semi-intact cell systems where high concentrations of nuclear localizing substrates are used, and cytoplasmic components such as the microtubule (MT) network, are either absent or damaged. Here we use the fluorescence recovery after photobleaching (FRAP) technique to analyze the nucleocytoplasmic flux of distinct fluorescently tagged proteins over time in living cultured cells. FRAP was performed in different parts of the cell to analyze the kinetics of nucleocytoplasmic trafficking and intranuclear/cytoplasmic mobility of the tumor suppressor Rb protein and a SV40 large tumor antigen (T-ag) derivative containing the nuclear localization sequence (NLS), both fused to green fluorescent protein (GFP). The results indicate that proteins carrying the T-ag NLS are highly mobile in the nucleus and cytoplasm. Rb, in contrast, is largely immobile in both cellular compartments, with similar nuclear import and export kinetics. Rb nuclear export was CRM-1-mediated, with its reduced mobility in the cytoplasm in part due to association with MTs. Overall our results show that nuclear and cytoplasm retention modulates the rates of nuclear protein import and export in intact cells. J. Cell. Biochem. 107: 1160-1167, 2009. (C) 2009 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据