4.6 Article

Mesenchymal Stem Cell Modification of Endothelial Matrix Regulates Their Vascular Differentiation

期刊

JOURNAL OF CELLULAR BIOCHEMISTRY
卷 107, 期 4, 页码 706-713

出版社

WILEY
DOI: 10.1002/jcb.22166

关键词

PERIVASCULAR NICHE; MESENCHYMAL STEM CELLS; ENDOTHELIAL CELLS; EXTRACELLULAR MATRIX; EXTRACELLULAR MATRIX MODIFICATIONS

资金

  1. NIAMS IRP [Z01AR41131]

向作者/读者索取更多资源

Mesenchymal stem cells (MSCs) respond to a variety of differentiation signal provided by their local environments. A large portion of these signals originate from the extracellular matrix (ECM). At the same time, MSCs secrete various matrix-altering agents, including proteases, that alter ECM-encoded differentiation signals. Here we investigated the interactions between MSC and ECM produced by endothelial cells (EC-matrix), focusing not only on the differentiation signals provided by EC-matrix, but also on MSC-alteration of these signals and the resultant affects on MSC differentiation. MSCs were cultured on EC-matrix modified in one of three distinct ways. First, MSCs cultured on native EC-matrix underwent endothelial cell (EC) differentiation early during the culture period and smooth muscle cell (SMC) differentiation at later time points. Second, MSCs cultured on crosslinked EC-matrix, which is resistant to MSC modification, differentiated towards an EC lineage only. Third, MSCs cultured on EC-matrix pre-modified by MSCs underwent SMC-differentiation only. These MSC-induced matrix alterations were found to deplete the factors responsible for EC-differentiation, yet activate the SMC-differentiation factors. In conclusion, our results demonstrate that the EC-matrix contains factors that support MSC differentiation into both ECs and SMCs, and that these factors are modified by MSC-secreted agents. By analyzing the framework by which EC-matrix regulates differentiation in MSCs, we have uncovered evidence of a feedback system in which MSCs are able to alter the very matrix signals acting upon them. J. Cell. Biochem. 107: 706-713, Published 2009 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据