4.5 Article

Cardiomyocyte Ca2+ handling and structure is regulated by degree and duration of mechanical load variation

期刊

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE
卷 16, 期 12, 页码 2910-2918

出版社

WILEY
DOI: 10.1111/j.1582-4934.2012.01611.x

关键词

assist device; Ca2+handling; excitation-contraction coupling

资金

  1. British Heart Foundation [FS/09/025/27468]
  2. British Heart Foundation [FS/09/025/27468] Funding Source: researchfish

向作者/读者索取更多资源

Cardiac transverse (t)-tubules are altered during disease and may be regulated by stretch-sensitive molecules. The relationship between variations in the degree and duration of load and t-tubule structure remains unknown, as well as its implications for local Ca2+-induced Ca2+ release (CICR). Rat hearts were studied after 4 or 8 weeks of moderate mechanical unloading [using heterotopic abdominal heartlung transplantation (HAHLT)] and 6 or 10 weeks of pressure overloading using thoracic aortic constriction. CICR, cell and t-tubule structure were assessed using confocal-microscopy, patch-clamping and scanning ion conductance microscopy. Moderate unloading was compared with severe unloading [using heart-only transplantation (HAHT)]. Mechanical unloading reduced cardiomyocyte volume in a time-dependent manner. Ca2+ release synchronicity was reduced at 8 weeks moderate unloading only. Ca2+ sparks increased in frequency and duration at 8 weeks of moderate unloading, which also induced t-tubule disorganization. Overloading increased cardiomyocyte volume and disrupted t-tubule morphology at 10 weeks but not 6 weeks. Moderate mechanical unloading for 4 weeks had milder effects compared with severe mechanical unloading (37% reduction in cell volume at 4 weeks compared to 56% reduction after severe mechanical unloading) and did not cause depression and delay of the Ca2+ transient, increased Ca2+ spark frequency or impaired t-tubule and cell surface structure. These data suggest that variations in chronic mechanical load influence local CICR and t-tubule structure in a time- and degree-dependent manner, and that physiological states of increased and reduced cell size, without pathological changes are possible.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据