4.5 Article

Enhanced neointimal hyperplasia and carotid artery remodelling in sequestosome 1 deficient mice

期刊

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE
卷 14, 期 6B, 页码 1546-1554

出版社

WILEY
DOI: 10.1111/j.1582-4934.2009.00914.x

关键词

sequestosome 1; carotid artery; neointimal hyperplasia; vascular injury; vascular remodelling; smooth muscle proliferation; p38MAPK; ERK1/2

资金

  1. Japan Society for Promotion of Science
  2. Great Britain Sasakawa Foundation
  3. European Union [B35]

向作者/读者索取更多资源

Deficiency in the signal adaptor protein sequestosome 1 (SQSTM1/A170/p62) in mice is associated with mature-onset obesity, accompanied by insulin and leptin resistance. We previously established that redox sensitive transcription factor Nrf2 up-regulates SQSTM1 expression in response to atherogenic stimuli or laminar shear stress in vascular cells, and here examine the role of SQSTM1 in neointimal hyperplasia and vascular remodelling in vivo following carotid artery ligation. Neointimal hyperplasia was markedly enhanced at ligation sites after 3 weeks in SQSTM1-/-compared with wild-type (WT) mice. The intimal area and stenotic ratio were, respectively, 2.1- and 1.7-fold higher in SQSTM1(-/-) mice, indicating enhanced proliferation of vascular smooth muscle cells (SMCs). When aortic SMCs were isolated from WT and SQSTM1(-/-) mice and cultured in vitro, we found that SQSTM1(-/-) SMCs proliferated more rapidly in response to foetal calf serum (FCS) and attained 2-3-fold higher cell densities compared to WT SMCs. Moreover, migration of SQSTM1(-/-) SMCs was enhanced compared to WT SMCs. Early and late phases of p38(MAPK) activation in response to FCS stimulation were also more enhanced in SQSTM1(-/-) SMCs, and inhibitors of p38 and ERK1/2 signalling pathways significantly attenuated SMC proliferation. In summary, SQSTM1(-/-) mice exhibit enhanced neointimal hyperplasia and vascular remodelling following arterial ligation in vivo. The enhanced proliferation of SQSTM1(-/-) aortic SMCs in vitro highlights a novel role for SQSTM1 in suppressing smooth muscle proliferation following vascular injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据