4.5 Article

Amyloid-β oligomers set fire to inflammasomes and induce Alzheimer's pathology

期刊

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE
卷 12, 期 6A, 页码 2255-2262

出版社

WILEY
DOI: 10.1111/j.1582-4934.2008.00496.x

关键词

apoptosis center dot inflammasome center dot innate immunity center dot neurodegeneration center dot NLR center dot review

资金

  1. Academy of Finland
  2. University of Kuopio, Finland

向作者/读者索取更多资源

Genetic and molecular studies have confirmed the central role of amyloid-beta production and fibrillation in the pathogenesis of Alzheimer's disease (AD). However, the pathological pathways from amyloid-beta peptide oligomerization to the major pathological hallmarks of AD, such as neurofibrillary tangles, inflammation and loss of cholinergic neurons, are largely unknown. The innate immunity defence system utilizes pattern recognition receptors to respond to a variety of danger- and pathogen-associated molecular structures. Amyloid-beta oligomers and fibrils and their cellular effects can activate the innate immunity defence and induce inflammatory and apoptotic responses in human brain. Amyloid-beta oligomers can interfere with many aspects of neuronal membrane functions and can evoke potassium (K+) efflux from neurons. A low K+ concentration is a potent activator for the NALP1 inflammasomes, which then stimulate caspase-1 to cleave the proforms of IL-1 beta and IL-18 cytokines. Interestingly, recent observations have demonstrated that amyloid-beta fibrils can activate NALP3 inflammasomes Via the lysosomal damage in mouse microglia. We will review here the activation mechanisms of NALP inflammasomes in neurons and microglia and several downstream effects in brain demonstrating that toxic amyloid-beta oligomers and fibrils can light afire in inflammasomes and induce Alzheimer's pathology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据