4.7 Article

Effects of lesions on synchrony and metastability in cortical networks

期刊

NEUROIMAGE
卷 118, 期 -, 页码 456-467

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2015.05.042

关键词

Neural dynamics; Kuramoto model; Metastability; Connectome; Graph theory; Stroke

资金

  1. Medical Research Council doctoral training award
  2. Wellcome Trust-GlaxoSmithKline Translational Medicine Training Programme
  3. ERC Grant CAREGIVING [615539]
  4. Medical Research Council [1110783] Funding Source: researchfish

向作者/读者索取更多资源

At the macroscopic scale, the human brain can be described as a complex network of white matter tracts integrating grey matter assemblies - the human connectome. The structure of the connectome, which is often described using graph theoretic approaches, can be used to model macroscopic brain function at low computational cost. Here, we use the Kuramoto model of coupled oscillators with time-delays, calibrated with respect to empirical functional MRI data, to study the relation between the structure of the connectome and two aspects of functional brain dynamics - synchrony, a measure of general coherence, and metastability, a measure of dynamical flexibility. Specifically, we investigate the relationship between the local structure of the connectome, quantified using graph theory, and the synchrony and metastability of the model's dynamics. By removing individual nodes and all of their connections from the model, we study the effect of lesions on both global and local dynamics. Of the nine nodal graph-theoretical properties tested, two were able to predict effects of node lesion on the global dynamics. The removal of nodes with high eigenvector centrality leads to decreases in global synchrony and increases in global metastability, as does the removal of hub nodes joining topologically segregated network modules. At the level of local dynamics in the neighbourhood of the lesioned node, structural properties of the lesioned nodes hold more predictive power, as five nodal graph theoretical measures are related to changes in local dynamics following node lesions. We discuss these results in the context of empirical studies of stroke and functional brain dynamics. (C) 2015 The Authors. Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据