4.5 Article

Wnt5a is a cell-extrinsic factor that supports self-renewal of mouse spermatogonial stem cells

期刊

JOURNAL OF CELL SCIENCE
卷 124, 期 14, 页码 2357-2366

出版社

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jcs.080903

关键词

Germline; Stem cells; Wnt signaling; Mouse

向作者/读者索取更多资源

The maintenance of spermatogonial stem cells (SSCs) provides the foundation for life-long spermatogenesis. Although glial-cell-line-derived neurotrophic factor and fibroblast growth factor 2 are crucial for self-renewal of SSCs, recent studies have suggested that other growth factors have important roles in controlling SSC fate. Because beta-catenin-dependent Wnt signaling promotes self-renewal of various stem cell types, we hypothesized that this pathway contributes to SSC maintenance. Using transgenic reporter mice for beta-catenin-dependent signaling, we found that this signaling was not active in SSCs in vitro and in most spermatogonia in vivo. Nonetheless, a pan-Wnt antagonist significantly reduced SSC activity in vitro, suggesting that some Wnt molecules exist in our serum-free culture system and contribute to SSC maintenance. Here, we report that Wnt5a promotes SSC activity. We found that Wnt5a-expressing fibroblasts supported SSC activity better than those not expressing Wnt5a in culture, and that recombinant Wnt5a stimulated SSC maintenance. Furthermore, Wnt5a promoted SSC survival in the absence of feeder cells, and this effect was abolished by inhibiting the Jun N-terminal kinase cascade. In addition, Wnt5a blocked beta-catenin-dependent signaling. We detected the expression of Wnt5a and potential Wnt5a receptors in Sertoli cells and stem/progenitor spermatogonia, respectively. These results indicate that Wnt5a is a cell-extrinsic factor that supports SSC self-renewal through beta-catenin-independent mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据