4.5 Article

Cortical actin dynamics driven by formins and myosin V

期刊

JOURNAL OF CELL SCIENCE
卷 124, 期 9, 页码 1533-1541

出版社

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jcs.079038

关键词

Actin dynamics; Cell polarity; Formin; MyoV

资金

  1. Max-Planck Society

向作者/读者索取更多资源

Cell morphogenesis requires complex and rapid reorganization of the actin cytoskeleton. The budding yeast Saccharomyces cerevisiae is an invaluable model system for studying molecular mechanisms driving actin dynamics. Actin cables in yeast are formin-generated linear actin arrays that serve as tracks for directed intracellular transport by type V myosins. Cables are constantly reorganized throughout the cell cycle but the molecular basis for such dynamics remains poorly understood. By combining total internal reflection microscopy, quantitative image analyses and genetic manipulations we identify kinetically distinct subpopulations of cables that are differentially driven by formins and myosin. Bni1 drives elongation of randomly oriented actin cables in unpolarized cells, whereas both formins Bnr1 and Bni1 mediate slower polymerization of cables in polarized cells. Type V myosin Myo2 surprisingly acts as a motor for translational cable motility along the cell cortex. During polarization, cells change from fast to slow cable dynamics through spatio-temporal regulation of Bni1, Bnr1 and Myo2. In summary, we identify molecular mechanisms for the regulation of cable dynamics and suggest that fast actin reorganization is necessary for fidelity of cell polarization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据