4.5 Article

SMRT analysis of MTOC and nuclear positioning reveals the role of EB1 and LIC1 in single-cell polarization

期刊

JOURNAL OF CELL SCIENCE
卷 124, 期 24, 页码 4267-4285

出版社

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jcs.091231

关键词

MTOC positioning; Nucleus positioning; Cell migration; Cell polarization; Cell biophysics; Cell shape

资金

  1. National Institutes of Health [U54CA143868, R01 GM084204]

向作者/读者索取更多资源

In several migratory cells, the microtubule-organizing center (MTOC) is repositioned between the leading edge and nucleus, creating a polarized morphology. Although our understanding of polarization has progressed as a result of various scratch-wound and cell migration studies, variations in culture conditions required for such assays have prevented a unified understanding of the intricacies of MTOC and nucleus positioning that result in cell polarization. Here, we employ a new SMRT (for sparse, monolayer, round, triangular) analysis that uses a universal coordinate system based on cell centroid to examine the pathways regulating MTOC and nuclear positions in cells plated in a variety of conditions. We find that MTOC and nucleus positioning are crucially and independently affected by cell shape and confluence; MTOC off-centering correlates with the polarization of single cells; acto-myosin contractility and microtubule dynamics are required for single-cell polarization; and end binding protein 1 and light intermediate chain 1, but not Par3 and light intermediate chain 2, are required for single-cell polarization and directional cell motility. Using various cellular geometries and conditions, we implement a systematic and reproducible approach to identify regulators of MTOC and nucleus positioning that depend on extracellular guidance cues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据