4.5 Article

CXCR7 is an active component of SDF-1 signalling in astrocytes and Schwann cells

期刊

JOURNAL OF CELL SCIENCE
卷 123, 期 7, 页码 1081-1088

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.062810

关键词

Chemokines; Astrocytes; Schwann cells; Cell proliferation; Erk; p38; PKC; Akt

向作者/读者索取更多资源

The alternative SDF-1 (stromal cell derived factor-1) receptor, CXCR7, has been suggested to act as either a scavenger of extracellular SDF-1 or a modulator of the primary SDF-1 receptor, CXCR4. CXCR7, however, also directly affects the function of various tumor-cell types. Here, we demonstrate that CXCR7 is an active component of SDF-1 signalling in astrocytes and Schwann cells. Cultured cortical astrocytes and peripheral nerve Schwann cells exhibit comparable total and cell-surface levels of expression of both SDF-1 receptors. Stimulation of astrocytes with SDF-1 resulted in the temporary activation of Erk1/2, Akt and PKC zeta/lambda, but not p38 and PKC alpha/beta. Schwann cells showed SDF-1-induced activation of Erk1/2, Akt and p38, but not PKC alpha/beta and PKC zeta/lambda. The respective signalling pattern remained fully inducible in astrocytes from CXCR4-deficient mice, but was abrogated following depletion of astrocytic CXCR7 by RNAi. In Schwann cells, RNAi-mediated depletion of either CXCR4 or CXCR7 silenced SDF-1 signalling. The findings of the astrocytic receptor-depletion experiments were reproduced by CXCR7 antagonist CCX754, but not by CXCR4 antagonist AMD3100, both of which abolished astrocytic SDF-1 signalling. Further underlining the functional importance of CXCR7 signalling in glial cells, we show that the mitogenic effects of SDF-1 on both glial cell types are impaired upon depleting CXCR7.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据