4.5 Article

Dynamics and molecular interactions of linker of nucleoskeleton and cytoskeleton (LINC) complex proteins

期刊

JOURNAL OF CELL SCIENCE
卷 122, 期 22, 页码 4099-4108

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.057075

关键词

LINC complex; Sun1; Sun2; Nesprin; Nuclear envelope; Lamin; Emerin

资金

  1. NIH [NS059352]

向作者/读者索取更多资源

The linker of nucleoskeleton and cytoskeleton (LINC) complex is situated in the nuclear envelope and forms a connection between the lamina and cytoskeletal elements. Sun1, Sun2 and nesprin-2 are important components of the LINC complex. We expressed these proteins fused to green fluorescent protein in embryonic fibroblasts and studied their diffusional mobilities using fluorescence recovery after photobleaching. We show that they all are more mobile in embryonic fibroblasts from mice lacking A-type lamins than in cells from wild-type mice. Knockdown of Sun2 also increased the mobility of a short, chimeric form of nesprin-2 giant (mini-nesprin-2G), whereas the lack of emerin did not affect the mobility of Sun1, Sun2 or mini-nesprin-2G. Fluorescence resonance energy transfer experiments showed Sun1 to be more closely associated with lamin A than is Sun2. Sun1 and Sun2 had similar affinity for the nesprin-2 KASH domain in plasmon surface resonance (Biacore) experiments. This affinity was ten times higher than that previously reported between nesprin-2 and actin. Deletion of the actin-binding domain had no effect on mini-nesprin-2G mobility. Our data support a model in which A-type lamins and Sun2 anchor nesprin-2 in the outer nuclear membrane, whereas emerin, Sun1 and actin are dispensable for this anchoring.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据