4.5 Article

An adhesion-independent, aPKC-dependent function for cadherins in morphogenetic movements

期刊

JOURNAL OF CELL SCIENCE
卷 122, 期 14, 页码 2514-2523

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.042796

关键词

Cadherin; Atypical PKC; Vertebrate morphogenesis; Convergent extension movement; Cancer migration

资金

  1. Koln Fortune travel [SFB829 A1]
  2. Canadian Institutes of Health Research [MOP-53075]

向作者/读者索取更多资源

Cadherin shedding affects migration and occurs in development and cancer progression. By examining the in vivo biological function of the extracellular cadherin domain (CEC1-5) independently of the shedding process itself, we identified a novel function for cadherins in convergent extension (CE) movements in Xenopus. CEC1-5 interfered with CE movements during gastrulation. Unexpectedly, CEC1-5 did not alter cell aggregation or adhesion to cadherin substrates. Instead, gastrulation defects were rescued by a membrane-anchored cadherin cytoplasmic domain, the polarity protein atypical PKC (aPKC) or constitutive active Rac, indicating that CEC1-5 modulates a cadherin-dependent signalling pathway. We found that the cadherin interacts with aPKC and, more importantly, that the extracellular domain alters this association as well as the phosphorylation status of aPKC. This suggests that CE movements require a dynamic regulation of cadherin-aPKC interaction. Our results show that cadherins play a dual role in CE movements: a previously identified adhesive activity and an adhesion-independent function that requires aPKC and Rac, thereby directly connecting cadherins with polarity. Our results also suggest that increased cadherin shedding, often observed in cancer progression, can regulate migration and invasion by modulating polarity protein activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据