4.5 Article

The multi-FERM-domain-containing protein FrmA is required for turnover of paxillin-adhesion sites during cell migration of Dictyostelium

期刊

JOURNAL OF CELL SCIENCE
卷 121, 期 8, 页码 1159-1164

出版社

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jcs.021725

关键词

FERM; adhesion; migration; cytoskeleton; talin

向作者/读者索取更多资源

FERM domain proteins, including talins, ERMs, FAK and certain myosins, regulate connections between the plasma membrane, cytoskeleton and extracellular matrix. Here we show that FrmA, a Dictyostelium discoideum protein containing two talin-like FERM domains, plays a major role in normal cell shape, cell-substrate adhesion and actin cytoskeleton organisation. Using total internal reflection fluorescence (TIRF) microscopy we show that FrmA-null cells are more adherent to substrate than wild-type cells because of an increased number, persistence and mislocalisation of paxillin-rich cell-substrate adhesions, which is associated with decreased motility. We show for the first time that talinA colocalises with paxillin at the distal ends of filopodia to form cell-substrate adhesions and indeed arrives prior to paxillin. After a period of colocalisation, talin leaves the adhesion site followed by paxillin. Whereas talinA-rich spots turnover prior to the arrival of the main body of the cell, paxillin-rich spots turn over as the main body of the cell passes over it. In FrmA-null cells talinA initially localises to cell-substrate adhesion sites at the distal ends of filopodia but paxillin is instead localised to stabilised adhesion sites at the periphery of the main cell body. This suggests a model for cell-substrate adhesion in Dictyostelium whereby the talin-like FERM domains of FrmA regulate the temporal and spatial control of talinA and paxillin at cell-substrate adhesion sites, which in turn controls adhesion and motility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据