4.5 Article

Myofibroblast communication is controlled by intercellular mechanical coupling

期刊

JOURNAL OF CELL SCIENCE
卷 121, 期 20, 页码 3305-3316

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.024521

关键词

Adherens junction; Gap junction; Calcium oscillations; Mechanotransduction; Wound healing

资金

  1. Swiss National Science Foundation [3100A0-102150/1]
  2. Novartis Science Foundation

向作者/读者索取更多资源

Neoformation of intercellular adherens junctions accompanies the differentiation of fibroblasts into contractile myofibroblasts, a key event during development of fibrosis and in wound healing. We have previously shown that intercellular mechanical coupling of stress fibres via adherens junctions improves contraction of collagen gels by myofibroblasts. By assessing spontaneous intracellular Ca2+ oscillations, we here test whether adherens junctions mechanically coordinate myofibroblast activities. Periodic Ca2+ oscillations are synchronised between physically contacting myofibroblasts and become desynchronised upon dissociation of adherens junctions with function-blocking peptides. Similar uncoupling is obtained by inhibiting myofibroblast contraction using myosin inhibitors and by blocking mechanosensitive ion channels using Gd3+ and GSMTx4. By contrast, gap junction uncouplers do not affect myofibroblast coordination. We propose the following model of mechanical coupling for myofibroblasts: individual cell contraction is transmitted via adherens junctions and leads to the opening of mechanosensitive ion channels in adjacent cells. The resulting Ca2+ influx induces a contraction that can feed back on the first cell and/or stimulate other contacting cells. This mechanism could improve the remodelling of cell-dense tissue by coordinating the activity of myofibroblasts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据