4.7 Article

Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed

期刊

JOURNAL OF CELL BIOLOGY
卷 183, 期 6, 页码 999-1005

出版社

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.200810060

关键词

-

资金

  1. National Institutes of Health (NIH)/National Heart, Lung, and Blood Institute (C. M. Waterman)
  2. Burroughs Wellcome Fund Career Award at the Scientific Interface
  3. Jane Coffin Childs Fellowship
  4. NIH Director's Pioneer Award [DP10D00354]
  5. Center for Modelling and Simulation in the Biosciences at Heidelberg (U. S. Schwarz)
  6. [R01 GM71868]

向作者/读者索取更多资源

How focal adhesions (FAs) convert retrograde filamentous actin (F-actin) flow into traction stress on the extracellular matrix to drive cell migration is unknown. Using combined traction force and fluorescent speckle microscopy, we observed a robust biphasic relationship between F-actin speed and traction force. F-actin speed is inversely related to traction stress near the cell edge where FAs are formed and F-actin motion is rapid. In contrast, larger FAs where the F-actin speed is low are marked by a direct relationship between F-actin speed and traction stress. We found that the biphasic switch is determined by a threshold F-actin speed of 8-10 nm/s, independent of changes in FA protein density, age, stress magnitude, assembly/disassembly status, or subcellular position induced by pleiotropic perturbations to Rho family guanosine triphosphatase signaling and myosin II activity. Thus, F-actin speed is a fundamental regulator of traction force at FAs during cell migration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据