4.7 Article

Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis

期刊

JOURNAL OF CELL BIOLOGY
卷 180, 期 5, 页码 905-914

出版社

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.200708010

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM064625] Funding Source: Medline

向作者/读者索取更多资源

Ca2+ influx through plasma membrane lesions triggers a rapid repair process that was previously shown to require the exocytosis of lysosomal organelles (Reddy, A., E. Caler, and N. Andrews. 2001. Cell. 106:157-169). However, how exocytosis leads to membrane resealing has remained obscure, particularly for stable lesions caused by pore-forming proteins. In this study, we show that Ca2+-dependent resealing after permeabilization with the bacterial toxin streptolysin O (SLO) requires endocytosis via a novel pathway that removes SLO-containing pores from the plasma membrane. We also find that endocytosis is similarly required to repair lesions formed in mechanically wounded cells. Inhibition of lesion endocytosis (by sterol depletion) inhibits repair, whereas enhancement of endocytosis through disruption of the actin cytoskeleton facilitates resealing. Thus, endocytosis promotes wound resealing by removing lesions from the plasma membrane. These findings provide an important new insight into how cells protect themselves not only from mechanical injury but also from microbial toxins and pore-forming proteins produced by the immune system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据