4.6 Article

Minimum connected component - A novel approach to detection of cognitive load induced changes in functional brain networks

期刊

NEUROCOMPUTING
卷 170, 期 -, 页码 15-31

出版社

ELSEVIER
DOI: 10.1016/j.neucom.2015.03.092

关键词

Cognition; Functional brain network; Electroencephalograph; Graph theory; Connected component; Spanning subgraph

向作者/读者索取更多资源

Recent advances in computational neuroscience have enabled trans-disciplinary researchers to address challenging tasks such as the identification and characterization of cognitive function in the brain. The application of graph theory has contributed to the modelling and understanding the brain dynamics. This paper presents a new approach based on a special graph theoretic concept called minimum connected component (MCC) to detect cognitive load induced changes in functional brain networks using EEG data. The results presented in this paper clearly demonstrate that the MCC based analysis of the functional brain networks derived from multi-channel EEG data is able to detect and quantify changes across the scalp in response to specific cognitive tasks. The MCC, due to its sensitivity to cognitive load, has the potential to be used as a tool not only to measure cognitive activity quantitatively, but also to detect cognitive impairment. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据