4.6 Article Proceedings Paper

Adaptive critic design-based robust neural network control for nonlinear distributed parameter systems with unknown dynamics

期刊

NEUROCOMPUTING
卷 148, 期 -, 页码 200-208

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.neucom.2013.08.049

关键词

Adaptive critic designs; Adaptive dynamic programming; Partial differential equation; Learning control; Neural networks; Uniformly ultimate boundedness

资金

  1. National Natural Science Foundation of China [61034005, 61104010, 61273027, 61273029]
  2. State Key Laboratory of Synthetical Automation for Process Industries [2013ZCX14]
  3. Fundamental Research Funds for the Central Universities [N130104001]

向作者/读者索取更多资源

In this paper, an adaptive critic design (ACD)-based robust on-line neural network control design is developed for a class of parabolic partial differential equation (PDE) systems with unknown nonlinear dynamics. First, the Galerkin method is applied to the parabolic PDE system to derive a finite-dimensional slow one and an infinite-dimensional stable fast subsystem. The obtained slow system is an ordinary differential equation (ODE) system with unknown nonlinearities, which accurately describes the dynamics of the slow modes of the PDE system. Then, a novel ACD-based robust optimal control scheme is proposed for the resulting nonlinear slow system with unknown dynamics. An action neural network (NN) is employed to approximate all the derived unknown nonlinear terms and a robust control term is further developed to attenuate the NN reconstruction errors and disturbances. Especially, by developing novel critic signals and Lyapunov function candidate, together with the adaptive bounding technique, no a prior knowledge for the bounds of the disturbance term, the NN ideal weights of action NN and critic NN and the NN reconstruction errors is required. Finally, simulation results demonstrate the effectiveness of the proposed robust optimal control scheme. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据