3.9 Article

Numerical Investigation of Potential Injection Strategies To Reduce Shale Barrier Impacts on SAGD Process

期刊

JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY
卷 50, 期 3, 页码 57-64

出版社

SPE-SOC PETROLEUM ENGINEERS, CANADA
DOI: 10.2118/133298-PA

关键词

-

向作者/读者索取更多资源

It is well known that shale barriers significantly reduce steam-assisted gravity drainage (SAGD) performance in Athabasca fields. An extensive 2D simulation study shows that the flow resistance at the end of shale barriers and the extra heat absorbed by the residual water inside the unproductive shale barrier are the main reasons for the shale barrier effects. Long continuous shale barriers located vertically above or near the wellbore delay production performance significantly. We investigated potential strategies, including solvent coinjection, top injector application, or a combination of both, to reduce the shale barrier impacts. Solvent in the vapour phase can pass through the narrow flow path at the end of a shale barrier. Meanwhile, because the phase condenses from vapour to liquid, solvent efficiently reduces the flow resistance of the shale barrier. Liquid solvent coinjection can accelerate the near-wellbore flow and reduce the residual oil saturation at the wellbore vicinity. Coinjecting a multicomponent solvent can flush out the oil at different areas with different drainage mechanisms from vaporized and liquid components. Additional injector application at the top of the reservoir results in only marginal improvement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据