4.6 Article

Perlecan/Hspg2 Deficiency Alters the Pericellular Space of the Lacunocanalicular System Surrounding Osteocytic Processes in Cortical Bone

期刊

JOURNAL OF BONE AND MINERAL RESEARCH
卷 26, 期 3, 页码 618-629

出版社

WILEY
DOI: 10.1002/jbmr.236

关键词

OSTEOCYTE; PERLECAN/HSPG2; MECHANOSENSING; HEPARAN SULFATE; LACUNOCANALICULAR SYSTEM; CORTICAL BONE

资金

  1. NIH [T32 HD07490]
  2. Foundation for Physical Therapy Florence Kendall Scholarship
  3. Foundation for Physical Therapy Promotion of Doctoral Studies II training fellowship
  4. American Physical Therapy Association [P01 CA098912, AR054385, P20 RR016458]

向作者/读者索取更多资源

Osteocytes project long, slender processes throughout the mineralized matrix of bone, where they connect and communicate with effector cells. The interconnected cellular projections form the functional lacunocanalicular system, allowing fluid to pass for cell-to-cell communication and nutrient and waste exchange. Prevention of mineralization in the pericellular space of the lacunocanalicular pericellular space is crucial for uninhibited interstitial fluid movement. Factors contributing to the ability of the pericellular space of the lacunocanalicular system to remain open and unmineralized are unclear. Immunofluorescence and immunogold localization by transmission electron microscopy demonstrated perlecan/Hspg2 signal localized to the osteocyte lacunocanalicular system of cortical bone, and this proteoglycan was found in the pericellular space of the lacunocanalicular system. In this study we examined osteocyte lacunocanalicular morphology in mice deficient in the large heparan sulfate proteoglycan perlecan/Hspg2 in this tissue. Ultrastructural measurements with electron microscopy of perlecan/Hspg2-deficient mice demonstrated diminished osteocyte canalicular pericellular area, resulting from a reduction in the total canalicular area. Additionally, perlecan/Hspg2-deficient mice showed decreased canalicular density and a reduced number of transverse tethering elements per canaliculus. These data indicated that perlecan/Hspg2 contributed to the integrity of the osteocyte lacunocanalicular system by maintaining the size of the pericellular space, an essential task to promote uninhibited interstitial fluid movement in this mechanosensitive environment. This work thus identified a new barrier function for perlecan/Hspg2 in murine cortical bone. (c) 2011 American Society for Bone and Mineral Research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据