4.6 Article

Role of Chemerin/CMKLR1 Signaling in Adipogenesis and Osteoblastogenesis of Bone Marrow Stem Cells

期刊

JOURNAL OF BONE AND MINERAL RESEARCH
卷 25, 期 2, 页码 222-234

出版社

WILEY
DOI: 10.1359/jbmr.091106

关键词

BONE MARROW STROMAL CELL; ADIPOCYTE; OSTEOBLAST; CHEMERIN; PPAR gamma

资金

  1. Canadian Institutes of Health Research
  2. Nova Scotia Health Research Foundation

向作者/读者索取更多资源

Maintenance of healthy bone mass requires a well-coordinated balance between the ongoing processes of bone formation and bone resorption. Bone-forming osteoblasts derive from resident adult stem cells within bone marrow called bone marrow stromal cells (BMSCs). These BMSCs are multipotent and also can give rise to adipocytes, which do not contribute directly to bone formation but may influence bone remodeling through the release of bioactive signaling molecules. Chemerin is a novel adipocyte-derived signaling molecule that promotes adipocyte differentiation. In this study we examined the role of chemerin and the cognate receptors CMKLR1 and CCRL2 as determinants of osteoblast and adipocyte differentiation of the preosteoblast 7F2 cell line and of primary BMSCs. Expression and secretion of chemerin increased dramatically with adipocyte differentiation of these cells. Functionally, knockdown of chemerin or CMKLR1 expression using RNA interference abrogated adipocyte differentiation, clonal expansion, and basal proliferation of BMSCs. In contrast, knockdown of either gene was associated with increased osteoblast marker gene expression and mineralization in response to osteoblastogenic stimuli. Forced expression of the adipogenic transcription factor peroxisome proliferator-activated receptor gamma (PPAR gamma) induced chemerin expression and partially rescued the loss of adipogenesis associated with chemerin or CMKLR1 knockdown in BMSCs. Taken together, these data support a novel role for chemerin/CMKLR1 signaling in regulating adipogenesis and osteoblastogenesis of bone marrow-derived precursor cells. These data reveal a potential role for this signaling pathway as a modulator of bone mass. (C) 2010 American Society for Bone and Mineral Research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据