4.6 Article

Cyclooxygenase-2 expression and prostaglandin E2 production in response to acidic pH through OGR1 in a human osteoblastic cell line

期刊

JOURNAL OF BONE AND MINERAL RESEARCH
卷 23, 期 7, 页码 1129-1139

出版社

WILEY
DOI: 10.1359/JBMR.080236

关键词

extracellular proton; OGR1 receptor; prostaglandin E-2; cyclooxygenase-2; osteoblastic cell

向作者/读者索取更多资源

Acidosis has been shown to induce depletion of bone calcium from the body. This calcium release process is thought to be partially cell mediated. In an organ culture of bone, acidic pH has been shown to induce cyclooxygenase-2 (COX-2) induction and prostaglandin E-2 (PGE(2)) production, resulting in stimulation of bone calcium release. However, the molecular mechanisms whereby osteoblasts sense acidic circumstances and thereby induce COX-2 induction and PGE(2) production remain unknown. In this study, we used a human osteoblastic cell line (NHOst) to characterize cellular activities, including inositol phosphate production, intracellular Ca2+ concentration ([Ca2+](i)), PGE(2) production, and COX-2 mRNA and protein expression, in response to extracellular acidification. Small interfering RNA (siRNA) specific to the OGR1 receptor and specific inhibitors for intracellular signaling pathways were used to characterize acidification-induced cellular activities. We found that extracellular acidic PH induced a transient increase in [Ca2+](i) and inositol phosphate production in the cells. Acidification also induced COX-2 induction, resulting in PGE(2) production. These proton-induced actions were markedly inhibited by siRNA targeted for the OGR1 receptor and the inhibitors for G(q/11) protein, phospholipase C, and protein kinase C. We conclude that the OGR1/G(q/11)/phospholipase C/protein kinase C pathway regulates osteoblastic COX-2 induction and subsequent PGE(2) production in response to acidic circumstances.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据