4.3 Article

Microarray analysis of thapsigargin - induced stress to the endoplasmic reticulum of mouse osteoblasts

期刊

JOURNAL OF BONE AND MINERAL METABOLISM
卷 26, 期 3, 页码 231-240

出版社

SPRINGER JAPAN KK
DOI: 10.1007/s00774-007-0825-1

关键词

microarray; endoplasmic reticulum; stress; osteoblasts p38; PERK

资金

  1. NIAMS NIH HHS [R01 AR50008] Funding Source: Medline

向作者/读者索取更多资源

Activating transcription factor 4 (ATF4) protein has a dual role in osteoblasts. It functions as a responder to stress to the endoplasmic reticulum (ER) as well as a transcription factor for bone formation. Little is known about molecular pathways that can potentially lead to stress-induced apoptosis or homeostasis of extracellular matrix (ECM) molecules. Based on microarray-derived mRNA expression data for mouse osteoblasts (MC3T3 E1 cells, clone 4), we analyzed the ER-stress responses in the presence of 10 nM Thapsigargin using two computational approaches: Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathways Analysis (IPA). GSEA presented a strong linkage to an expression pattern observed in the responses to hypoxia, and IPA identified two molecular pathways: ATF4-unlinked connective tissue development and ATF4-linked organ morphology. Real-time polymerase chain reaction (PCR) and Western blot analyses validated eIF2 alpha-driven translational regulation as well as ATF4-linked transcriptional activation of transcription factors and growth factors including FOS, FGF-9, and BMP-2. Consistent with the role of p38 MAPK in hypoxia, phosphorylation of p38 MAPK was activated in nonapoptotic osteoblasts under surviving ER stress. Furthermore, the level of phosphorylated PERK was elevated. These results support cross-talk between p38 MAPK and ER kinase, presenting a similarity to the responses to hypoxia as well as a pathway toward connective tissue development and organ morphology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据