4.6 Article

The Mechanism of Action of Induced Membranes in Bone Repair

期刊

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.2106/JBJS.L.00310

关键词

-

向作者/读者索取更多资源

Background: Inducement of foreign-body granulation tissue is a relatively novel therapeutic modality in bone repair. A two-stage bone reconstruction method, known as the Masquelet technique, combines inducement of a granulation tissue membrane and subsequent bone autografting as a biphasic technique allowing reconstruction of large bone defects. In light of their already well-characterized osteogenesis-improving capabilities in animals, we performed this translational study to investigate these membranes in patients. Methods: Fourteen patients with complicated fractures and bone defects were randomly selected for this study. Biopsy samples of foreign-body-induced membranes were collected at different time points during scheduled surgical procedures. The membranes were co-cultured with mesenchymal stromal cells, and differentiation into the osteoblastic lineage was assessed by measuring alkaline phosphatase activity, aminoterminal propeptide of type-I procollagen (PINP) production, and Ca2+ concentration. Histological characteristics were evaluated with image analysis. Quantitative reverse transcription polymerase chain reaction was used to measure vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), and type-I collagen (Col-1) expression. Results: The induced membranes were characterized histologically by maturating vascularized fibrous tissue. The vascularization was greatest in one-month-old samples and decreased to <60% in three-month-old samples. One-month-old membrane samples had the highest expression of VEGF, IL-6, and Col-1, whereas two-month-old membranes expressed <40% of the levels of the one-month-old membranes. Specific alkaline phosphatase activity, PINP production, and Ca2+ concentration were increased in co-cultures when a membrane sample was present. In cultures of one-month-old membranes, PINP production was more than two times and Ca2+ deposition was four times higher than that in cultures of two-month-old membranes. Conclusions: The induced membranes have osteogenesis-improving capabilities. These capabilities, however, appear to decrease over time. We speculate that the optimal time for performing second-stage surgery may be within a month after implantation of foreign material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据